Multi-Walled Carbon Nanotubes Composites for Microwave Absorbing Applications

Author:

Savi PatriziaORCID,Giorcelli Mauro,Quaranta Simone

Abstract

The response of materials to impinging electromagnetic waves is mainly determined by their dielectric (complex permittivity) and magnetic (complex permeability). In particular, radar absorbing materials are characterized by high complex permittivity (and eventually large values of magnetic permeability), Indeed, energy dissipation by dielectric relaxation and carrier conduction are principally responsible for diminishing microwave radiation reflection and transmission in non-magnetic materials. Therefore, the scientific and technological community has been investigating lightweight composites with high dielectric permittivity in order to improve the microwave absorption (i.e., radar cross-section reduction) in structural materials for the aerospace industry. Multiwalled carbon nanotubes films and their composites with different kind of polymeric resins are regarded as promising materials for radar absorbing applications because of their high permittivity. Nanocomposites based on commercial multi-wall carbon nano-tube (MWCNT) fillers dispersed in an epoxy resin matrix were fabricated. The morphology of the filler was analyzed by Field emission scanning electron microscopy (FESEM) and Raman spectroscopy, while the complex permittivity and the radiation reflection coefficient of the composites was measured in the radio frequency range. The reflection coefficient of a single-layer structure backed by a metallic plate was simulated based on the measured permittivity. Simulation achievements were compared to the measured reflection coefficient. Besides, the influence of morphological MWCNT parameters (i.e., aspect ratio and specific surface area) on the reflection coefficient was evaluated. Results verify that relatively low weight percent of MWCNTs are suitable for microwave absorption applications when incorporated into polymer matrixes (i.e., epoxy resin).

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3