Surface Plasmon Nanolaser: Principle, Structure, Characteristics and Applications

Author:

Xu Litu,Li Fang,Liu Yahui,Yao Fuqiang,Liu Shuai

Abstract

Photonic devices are becoming more and more miniaturized and highly integrated with the advancement of micro-nano technology and the rapid development of integrated optics. Traditional semiconductor lasers have diffraction limit due to the feedback from the optical system, and their cavity length is more than half of the emission wavelength, so it is difficult to achieve miniaturization. Nanolasers based on surface plasmons can break through the diffraction limit and achieve deep sub-wavelength or even nano-scale laser emission. The improvement of modern nanomaterial preparation processes and the gradual maturity of micro-nano machining technology have also provided technical conditions for the development of sub-wavelength and nano-scale lasers. This paper describes the basic principles of surface plasmons and nano-resonators. The structure and characteristics of several kinds of plasmonic nanolasers are discussed. Finally, the paper looks forward to the application and development trend of nanolasers.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3