Abstract
This paper deals with the dynamic modeling of a typical single-zone building. It describes the development of a dynamic model for thermal transient analysis and its application to a simplified test case considering solar irradiation and internal radiation. The dynamic behavior of the indoor air temperature has been investigated by means of a lumped approach using a state-space representation developed in MATLAB/Simulink. A set of daily temperature profiles, which are representative of the Mediterranean climatic condition, on a few different winter days, has been used as boundary conditions for the dynamic simulations. In addition, the model has been validated using two different sets of experimental data available in the literature, both statically and dynamically. Finally, a layer of insulation with a phase change material (PCM) is applied to the single zone building to quantify its effect on the building’s behavior. The results showed that the rate and amount of energy consumption in the building with PCM are moderately lower than the building without PCM. In addition, the variation of inlet air temperature, solar effects, and energy consumption have been evaluated for a case study example, as well as comfort in transient simulation to achieve a complete evaluation of the test building investigated. A satisfactory agreement was obtained between the experimental and the simulation results and shows that the model can be used for a wide range of materials, dimensions, thermal resistances, and boundary conditions.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献