Exergy and Economic Evaluation of a Hybrid Power Plant Coupling Coal with Solar Energy

Author:

Serrano-Sanchez Cristina,Olmeda-Delgado Marina,Petrakopoulou Fontina

Abstract

Hybrid power plants that couple conventional with renewable energy are promising alternatives to electricity generation with low greenhouse gas emissions. Such plants aim to improve the operational stability of renewable power plants, while at the same time reducing the fuel consumption of conventional fossil fuel power plants. Here, we propose and evaluate the thermodynamic and economic viability of a hybrid plant under different operating conditions, applying exergy and economic analyses. The hybrid plant combines a coal plant with a solar-tower field. The plant is also compared with a conventional coal-fired plant of similar capacity. The results show that the proposed hybrid plant can emit 4.6% less pollutants due to the addition of solar energy. Fuel consumption can also be decreased by the same amount. The exergy efficiency of the hybrid power plant is found to be 35.8%, 1.6 percentage points higher than the efficiency of the conventional coal plant, and the total capital investment needed to build and operate a plant is 8050.32 $/kW. This cost is higher than the necessary capital investment of 5979.69 $/kW to build and operate a coal-fired power plant, and it is mainly due to the higher purchased equipment cost. Finally, the levelized cost of electricity of the hybrid plant is found to be 0.19 $/kWh (using both solar and coal resources) and 0.12 $/kWh when the plant is fueled only with coal.

Funder

Ministerio de Ciencia e Innovación

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference59 articles.

1. Producción de electricidad a partir de carbón (% del total)https://datos.bancomundial.org/indicador/eg.elc.coal.zs

2. Modeling of indirect carbon fuel cell systems with steam and dry gasification

3. Water Resources across Europe—Confronting Water Scarcity and Drought;Collins,2009

4. Quantifying impacts of heat waves on power grid operation

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3