Selective Laser Sintering Fabricated Thermoplastic Polyurethane/Graphene Cellular Structures with Tailorable Properties and High Strain Sensitivity

Author:

Ronca Alfredo,Rollo Gennaro,Cerruti Pierfrancesco,Fei Guoxia,Gan Xinpeng,Buonocore Giovanna,Lavorgna MarinoORCID,Xia Hesheng,Silvestre Clara,Ambrosio Luigi

Abstract

Electrically conductive and flexible thermoplastic polyurethane/graphene (TPU/GE) porous structures were successfully fabricated by selective laser sintering (SLS) technique starting from graphene (GE)-wrapped thermoplastic polyurethane (TPU) powders. Several 3D mathematically defined architectures, with porosities from 20% to 80%, were designed by using triply periodic minimal surfaces (TMPS) equations corresponding to Schwarz (S), Diamond (D), and Gyroid (G) unit cells. The resulting three-dimensional porous structures exhibit an effective conductive network due to the segregation of graphene nanoplatelets previously assembled onto the TPU powder surface. GE nanoplatelets improve the thermal stability of the TPU matrix, also increasing its glass transition temperature. Moreover, the porous structures realized by S geometry display higher elastic modulus values in comparison to D and G-based structures. Upon cyclic compression tests, all porous structures exhibit a robust negative piezoresistive behavior, regardless of their porosity and geometry, with outstanding strain sensitivity. Gauge factor (GF) values of 12.4 at 8% strain are achieved for S structures at 40 and 60% porosity, and GF values up to 60 are obtained for deformation extents lower than 5%. Thermal conductivity of the TPU/GE structures significantly decreases with increasing porosity, while the effect of the structure architecture is less relevant. The TPU/GE porous structures herein reported hold great potential as flexible, highly sensitive, and stable strain sensors in wearable or implantable devices, as well as dielectric elastomer actuators.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3