Author:
Zhao ,Li ,Xiao ,Meng ,Han ,Yu
Abstract
Drift is an important issue that impairs the reliability of sensors, especially in gas sensors. The conventional method usually adopts the reference gas to compensate for the drift. However, its classification accuracy is not high. We propose a supervised learning algorithm that is based on multi-classifier integration for drift compensation in this paper, which incorporates drift compensation into the classification process, motivated by the fact that the goal of drift compensation is to improve the classification performance. In our method, with the obtained characteristics of sensors and the advantage of Support Vector Machine (SVM) in few-shot classification, the improved Long Shot Term Memory (LSTM) is integrated to build the multi-class classifier model. We tested the proposed approach on the publicly available time series dataset that was collected over three years by the metal-oxide gas sensors. The results clearly indicate the superiority of multiple classifier approach, which achieves higher classification accuracy as compared with different approaches during testing period with an ensemble of classifiers in the presence of sensor drift over time.
Funder
the National Key Research
Development Program of China
National Nature Science Foundation under Grant
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献