Abstract
A typical man–machine coupling system could provide the wearer a coordinated and assisted movement by the lower limb exoskeleton. The process of cooperative movement relies on the accurate perception of the wearer’s human movement information and the accurate planning and control of the joint movement of the lower limb exoskeleton. In this paper, a neural network and a Long-Short Term Memory (LSTM) machine learning model method is proposed to predict the actual movement trajectory of the human body’s lower limbs. Then a wearable joint angle measurement device was designed for gait trajectory prediction, which can be used for predictive control through machine learning methods. The experimental results show that the LSTM model can accurately predict the gait trajectory with an average mean square error. This method has practical significance for prediction the trajectory of the lower limb exoskeleton.
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
Young Eastern Scholars Program of Shanghai
Subject
Control and Optimization,Control and Systems Engineering
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献