A Soft Electro-Hydraulic Pneumatic Actuator with Self-Sensing Capability toward Multi-Modal Haptic Feedback

Author:

Wang HaoyuORCID,Cheng XiangORCID,Huang PeiORCID,Yu Meng,Ma Jiaqi,Peng Shigang,Cheng Yue,Yu YuanORCID,Yang Weimin,Wang Pengfei,Jiao ZhiweiORCID

Abstract

Haptic feedback is appealing for achieving the realistic perception of environmental changes for human bodies in human–computer interaction fields. However, existing haptic actuators have some hurdles such as single mode, poor compatibility, or incomplete tactile information. In this study, we proposed a novel way to generate haptic feedback by designing a soft electro-hydraulic pneumatic actuator (SEHPA) with dual drive modes. The SEHPA was structured with silicone films, a silicone air chamber, flexible electrodes, and an insulating liquid dielectric for good human–machine compatibility. The SEHPA had the advantages of high output force (1.5 N at 10 kPa) and displacement (4.5 mm at 5 kPa), as well as various haptic notifications (0~400 Hz vibration). The electro-hydraulic drive method realized smooth output force changes at the millinewton level (0~40 mN) and output displacement changes at the micron level (0~800 μm), which further enriched the details of the tactile experience. In addition, the self-sensing capability of the SEHPA can be dedicated to monitoring and ensuring precise output. The SEHPAs can be potentially mounted on the fingertips to provide accurate tactile sensation once the manipulator touches an object through teleoperation. More invisible information can also be obtained by customizing various haptic notifications. The excellent response behavior and accurate tactile haptic feedback demonstrate the candidate for teleoperation fields.

Funder

National Natural Science Foundation of China

Beijing Nova Program of China

Publisher

MDPI AG

Subject

Control and Optimization,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3