An ISAR and Visible Image Fusion Algorithm Based on Adaptive Guided Multi-Layer Side Window Box Filter Decomposition

Author:

Zhang Jiajia1ORCID,Li Huan1,Zhao Dong12ORCID,Arun Pattathal V.3,Tan Wei4,Xiang Pei1ORCID,Zhou Huixin1,Hu Jianling2,Du Juan5

Affiliation:

1. School of Physics, Xidian University, Xi’an 710071, China

2. School of Electronics and Information Engineering, Wuxi University, Wuxi 214105, China

3. Computer Science and Engineering Group, Indian Institute of Information Technology, Sri City 441108, India

4. Science and Technology on Complex System Control and Intelligent Agent Cooperation Laboratory, Beijing Mechano-Electronic Engineering Institute, Beijing 100074, China

5. Department of Basic, Air Force Engineering University, Xi’an 710100, China

Abstract

Traditional image fusion techniques generally use symmetrical methods to extract features from different sources of images. However, these conventional approaches do not resolve the information domain discrepancy from multiple sources, resulting in the incompleteness of fusion. To solve the problem, we propose an asymmetric decomposition method. Firstly, an information abundance discrimination method is used to sort images into detailed and coarse categories. Then, different decomposition methods are proposed to extract features at different scales. Next, different fusion strategies are adopted for different scale features, including sum fusion, variance-based transformation, integrated fusion, and energy-based fusion. Finally, the fusion result is obtained through summation, retaining vital features from both images. Eight fusion metrics and two datasets containing registered visible, ISAR, and infrared images were adopted to evaluate the performance of the proposed method. The experimental results demonstrate that the proposed asymmetric decomposition method could preserve more details than the symmetric one, and performed better in both objective and subjective evaluations compared with the fifteen state-of-the-art fusion methods. These findings can inspire researchers to consider a new asymmetric fusion framework that can adapt to the differences in information richness of the images, and promote the development of fusion technology.

Funder

the 111 Project

National Natural Science Foundation of China

Natural Science Foundation of ShanDong province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3