Upper Mantle Velocity Structure Beneath the Yarlung–Tsangpo Suture Revealed by Teleseismic P-Wave Tomography

Author:

Yan Dong1ORCID,Tian You12ORCID,Li Zhiqiang1,Li Hongli1

Affiliation:

1. College of Geoexploration Science and Technology, Jilin University, Changchun 130026, China

2. Changbai Volcano Geophysical Observatory, Ministry of Education, Jilin University, Changchun 130026, China

Abstract

We applied teleseismic tomography to investigate the 3D P-wave velocity (Vp) structure of the crust and upper mantle at depths of 50–400 km beneath the Yarlung–Tsangpo suture (YTS), by using 6164 P-wave relative travel-time residuals collected from 495 teleseismic events recorded at 20 three-component broadband seismograms. A modified multi-channel cross-correlation method was adopted to automatically calculate the relative arrival-time residuals of all teleseismic events, which significantly improved the efficiency and precision of the arrival-time data collection. Our results show that alternating low- and high-Vp anomalies are visible beneath the Himalayan and Lhasa blocks across the YTS, indicating that strong lateral heterogeneities exist beneath the study region. A significant high-Vp zone is visible beneath the southern edge of the Lhasa block at 50–100 km depths close to the YTS, which might indicate the rigid Tibetan lithosphere basement. There exists a prominent low-Vp zone beneath the Himalayan block to the south of the YTS extending to ~150 km depth, which might be associated with the fragmentation of the underthrusting Indian continental lithosphere (ICL) and induce localized upwelling of asthenospheric materials from the upper mantle. In addition, significant low-Vp anomalies were observed beneath the Yadong–Gulu rift and the Cona–Sangri rift extending to ~300 km depth, indicating that the tearing of the subducted ICL might provide pathways for the localized asthenospheric materials upwelling, which contributes to the widespread distribution of north–south trending rifts and geothermal activities in southern Tibet.

Funder

Second Tibetan Plateau Scientific Expedition and Research Program

National Natural Science Foundation of China

Program for JLU Science and Technology Innovative Research Team

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3