Improving Radar Data Assimilation Forecast Using Advanced Remote Sensing Data

Author:

Hastuti Miranti Indri12ORCID,Min Ki-Hong1ORCID,Lee Ji-Won1

Affiliation:

1. Department of Atmospheric Sciences, Kyungpook National University, Daegu 41566, Republic of Korea

2. Kualanamu Meteorological Station, The Agency for Meteorology, Climatology, and Geophysics of the Republic of Indonesia (BMKG), Jl. Tengku Heran, Beringin, Deli Serdang 20552, Indonesia

Abstract

Assimilating the proper amount of water vapor into a numerical weather prediction (NWP) model is essential in accurately forecasting a heavy rainfall. Radar data assimilation can effectively initialize the three-dimensional structure, intensity, and movement of precipitation fields to an NWP at a high resolution (±250 m). However, the in-cloud water vapor amount estimated from radar reflectivity is empirical and assumes that the air is saturated when the reflectivity exceeds a certain threshold. Previous studies show that this assumption tends to overpredict the rainfall intensity in the early hours of the prediction. The purpose of this study is to reduce the initial value error associated with the amount of water vapor in radar reflectivity by introducing advanced remote sensing data. The ongoing research shows that errors can be largely solved by assimilating satellite all-sky radiances and global positioning system radio occultation (GPSRO) refractivity to enhance the moisture analysis during the cycling period. The impacts of assimilating moisture variables from satellite all-sky radiances and GPSRO refractivity in addition to hydrometeor variables from radar reflectivity generate proper amounts of moisture and hydrometeors at all levels of the initial state. Additionally, the assimilation of satellite atmospheric motion vectors (AMVs) improves wind information and the atmospheric dynamics driving the moisture field which, in turn, increase the accuracy of the moisture convergence and fluxes at the core of the convection. As a result, the accuracy of the timing and intensity of a heavy rainfall prediction is improved, and the hourly and accumulated forecast errors are reduced.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3