Mapping Small Watercourses from DEMs with Deep Learning—Exploring the Causes of False Predictions

Author:

Koski Christian1,Kettunen Pyry1ORCID,Poutanen Justus1,Zhu Lingli1,Oksanen Juha1ORCID

Affiliation:

1. Finnish Geospatial Research Institute (FGI) in the National Land Survey of Finland (NLS), Vuorimiehentie, 02150 Espoo, Finland

Abstract

Vector datasets of small watercourses, such as rivulets, streams, and ditches, are important for many visualization and analysis use cases. Mapping small watercourses with traditional methods is laborious and costly. Convolutional neural networks (CNNs) are state-of-the-art computer vision methods that have been shown to be effective for extracting geospatial features, including small watercourses, from LiDAR point clouds, digital elevation models (DEMs), and aerial images. However, the cause of the false predictions by machine-learning models is often not thoroughly explored, and thus the impact of the results on the process of producing accurate datasets is not well understood. We digitized a highly accurate and complete dataset of small watercourses from a study area in Finland. We then developed a process based on a CNN that can be used to extract small watercourses from DEMs. We tested and validated the performance of the network with different input data layers, and their combinations to determine the best-performing layer. We analyzed the false predictions to gain an understanding of their nature. We also trained models where watercourses with high levels of uncertainty were removed from the training sets and compared the results to training models with all watercourses in the training set. The results show that the DEM was the best-performing layer and that combinations of layers provided worse results. Major causes of false predictions were shown to be boundary errors with an offset between the prediction and labeled data, as well as errors of omission by watercourses with high levels of uncertainty. Removing features with the highest level of uncertainty from the labeled dataset increased the overall f1-score but reduced the recall of the remaining features. Additional research is required to determine if the results remain similar to other CNN methods.

Funder

Ministry of Finance in Finland

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3