Magnetopause Detection under Low Solar Wind Density Based on Deep Learning

Author:

Zhang Yujie123,Sun Tianran1,Niu Wenlong12ORCID,Guo Yihong4,Yang Song123,Peng Xiaodong1,Yang Zhen1

Affiliation:

1. National Space Science Center, Chinese Academy of Sciences, Beijing 100094, China

2. University of Chinese Academy of Sciences, Beijing 100094, China

3. Hangzhou Institute for Advanced Study (UCAS), Hangzhou 310012, China

4. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China

Abstract

Extracting the peak value of the X-ray signal in the original magnetopause detection method of soft X-ray imaging (SXI) for the SMILE satellite is problematic because of the unclear interface of the magnetosphere system under low solar wind density and the short integration time. Herein, we propose a segmentation algorithm for soft X-ray images based on depth learning, we construct an SXI simulation dataset, and we segment the magnetospheric system by learning the spatial structure characteristics of the magnetospheric system image. Then, we extract the maximum position of the X-ray signal and calculate the spatial configuration of the magnetopause using the tangent fitting approach. Under a uniform universe condition, we achieved a pixel accuracy of the maximum position of the photon number detected by the network as high as 90.94% and contained the position error of the sunset point of the 3D magnetopause below 0.2 RE. This result demonstrates that the proposed method can detect the peak photon number of magnetospheric soft X-ray images with low solar wind density. As such, its use improves the segmentation accuracy of magnetospheric soft X-ray images and reduces the imaging time requirements of the input image.

Funder

Youth Innovation Promotion Association

Key Research Program of Frontier Sciences, CAS

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference46 articles.

1. SMILE Satellite mission survey;Wang;Space Int.,2017

2. Branduardi-Raymont, G., Escoubet, C.P., Kuntz, K., Lui, T., Read, A., Sibeck, D., Dai, L., Dmitriev, A., Donovan, E., and Dunlo, M. (ISSI-BJ Magazine, 2016). Link between Solar Wind, Magnetosphere, and Lonosphere, ISSI-BJ Magazine, p. 9.

3. The distant geomagnetic field: 3. Disorder and shocks in the magnetopause;Sonett;J. Geophys. Res.,1963

4. The boundary of the geo-magnetic field;Cahill;J.Geophys. Res.,1963

5. Discovery of X-ray and extreme ultraviolet emission from comet C/Hyakutake 1996 B2;Lisse;Science,1996

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3