Identifying PM2.5-Related Health Burden in the Context of the Integrated Development of Urban Agglomeration Using Remote Sensing and GEMM Model

Author:

Xu Lili12ORCID,Chen Binjie3,Huang Chenhao12,Zhou Mengmeng4,You Shucheng5,Jiang Fangming12,Chen Weirong12,Deng Jinsong12

Affiliation:

1. College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China

2. Zhejiang Ecological Civilization Academy, Huzhou 313300, China

3. Department of Geography and Spatial Information Techniques, Ningbo University, Ningbo 315211, China

4. School of Business, Changzhou University, Changzhou 213159, China

5. Resource Investigation and Monitoring Department, Land Satellite Remote Sensing Application Center, MNR, Beijing 100048, China

Abstract

Integrated development of urban agglomeration is emerging as the main pattern of China’s new modernization. Yet, atmospheric pollution continues to have an adverse impact on public health, challenging efforts to promote coordinated regional development. To better understand the interaction between atmospheric pollution-related health burdens and urbanization, this study employed deep learning technology to obtain high-resolution satellite-derived PM2.5 concentration data across the Yangtze River Delta (YRD) region. Using the Global Exposure Mortality Model (GEMM), this study estimated premature mortality resulting from long-term exposure to PM2.5 and innovatively incorporated exposure factors to improve accuracy. Results indicated that while PM2.5 concentrations decreased by 16.13% from 2015 to 2019, the region still experienced 239,000 premature mortalities in 2019, with notable disparities among cities of different economic levels and sizes. Furthermore, it was found through correlation analysis that residential density and GDP per capita were highly associated with premature mortality. In conclusion, these findings highlight the continuing challenge of achieving equitable effectiveness of joint air pollution control across regions in the context of integrated development of urban agglomeration.

Funder

National Natural Science Foundation of China, ZJU-ZCCC Institute of Collaborative Innovation

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3