Formation Behaviors of Coated Reactive Explosively Formed Projectile

Author:

Zheng YuanfengORCID,Bie Haiyuan,Wang Shipeng,Li Peiliang,Zhang Hongyu,Ge ChaoORCID

Abstract

The formation behavior of coated reactive explosively formed projectiles (EFP) is studied by the combination of experiments and simulations. The results show that the coated EFP can be obtained by explosively crushing the double-layer liners, and the simulation agrees with the experiment well. Then, the interaction process between the two liners is discussed in detail, and the formation and coating mechanism are revealed. It can be found that there are three phases in the formation process, including the impact, closing and stretching phases. During the impact phase, the velocities of two liners rise in turns with the kinetic energy exchange. In the closing phase, the copper liner is collapsed forward to the axis and completely coats the reactive liner. It is mentioned that the edge of the copper liner begins to form a metal precursor penetrator in this stage. During the stretching phase, the coated reactive EFP is further stretched and fractured, resulting in the separation of the metal precursor penetrator and the following coated reactive projectile. Further studies show both the edge thickness and the curvature radius of the copper liner have significant influences on formation behaviors. By decreasing the edge thickness or the curvature radius, the difficulty of closing decreases, but the tip velocity and the length of precursor penetrator increases. As the thickness and diameter of the reactive liner decrease, the coating velocity increases slightly, but the total length of coated reactive EFP tends to decrease.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

Reference20 articles.

1. Formation and impact-induced separation of tandem EFPs;Ma;Def. Technol.,2020

2. High speed impact effect of EFP on armor targets;Li;J. Vib. Shock,2011

3. Novel energetic composite materials;Nable;MRS Online Proc. Libr.,2005

4. Shock-induced reaction behaviors of functionally graded reactive material;Yuan;Def. Technol.,2021

5. Behind-Target Rupturing Effects of Sandwich-like Plates by Reactive Liner Shaped Charge Jet;Zheng;Propellants Explos. Pyrotech.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3