Triboelectric Energy-Harvesting Floor Tile

Author:

Thainiramit PanuORCID,Jayasvasti Subhawat,Yingyong Phonexai,Nandrakwang Songmoung,Isarakorn DonORCID

Abstract

The aim of this study was to investigate the real-world electrical parameters that strongly affected the performance of a triboelectric energy-harvesting floor tile design: triboelectric material thickness, cover plate displacement distance or gap width, and cover plate pressing frequency, so that real-world specifications of the harvesting floor tile can be accurately specified. The structure of the designed triboelectric energy harvester, with readily available polytetrafluoroethylene (PTFE) film and aluminum foil, was simple and hence easy to fabricate, and the material cost was low. A square wave was used to simulate the pressing frequency on the test bench’s cover plate. The results showed that the voltage and current were proportional to the gap width, and the thinner the triboelectric layer thickness, the higher the output voltage and current. A test bench with a 0.2 mm thick PTFE triboelectric layer generated the highest energy output. In a later experiment, a triboelectric energy-harvesting floor tile (TEHFT) prototype was constructed with 0.1 and 0.2 mm thick PTFE layers. We found that at 2 Hz stepping frequency and 0.1 mm PTFE thickness, the optimal load and cumulative energy of the TEHFT were 0.8 MΩ and 3.81 mJ, respectively, while with 0.2 mm PTFE thickness, these two parameters were 1.1 MΩ and 7.69 mJ, respectively. The TEHFT with 0.2 mm thick PTFE layer was able to illuminate a series of 100 to 150 LEDs, sufficient power to drive small electronics and sensor nodes. This discovery provides important data on the structure, material, and contact surface area of a TEHFT that can be adjusted to suit specific requirements of a special function triboelectric energy harvester.

Funder

King Mongkut’s Institute of Technology Ladkrabang Research Fund

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3