Abstract
Carbon-based materials have been widely explored as electromagnetic (EM) wave absorbing materials with specific surface areas and low density. Herein, novel porous carbon/SiOC ceramic composites materials (porous C/sp-SiOC) were prepared from the binary mixture, which used the low cost pitch as carbon resource and the polysilylacetylene (PSA) as SiOC ceramic precursor. With the melt-blending-phase separation route, the PSA resin formed micro-spheres in the pitch. Then, numerous SiOC ceramic micro-spheres were generated in porous carbon matrices during the pyrolysis process. By changing the percent of SiOC, the microstructure and wave absorption of porous C/sp-SiOC composites could be adjusted. The synergistic effect of the unique structure, the strong interfacial polarization, and the optimized impedance matching properties contributed to the excellent absorption performance of porous C/sp-SiOC composites. The minimum reflection loss for porous C/sp-SiOC absorber reached −56.85 dB, and the widest effective bandwidth was more than 4 GHz with a thickness of only 1.39 mm. This presented research provides an innovative and practical approach to developing high-performance porous carbon-based microwave absorption materials from green chemistry.
Funder
National Natural Science Foundation of China
Shandong Natural Science Foundation Project
Key Research and Development Program of Shandong Province
Subject
General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献