Effects of Ambient Humidity on Water Migration and Hydrate Change in Early-Age Hardened Cement Paste

Author:

Li Dafu,Tian Bo,Niu Kaimin,Li Lihui,Quan Lei,Zhu XuweiORCID

Abstract

Ultra-low humidity environments will lead to changes in the microstructure of C–S–H, which will reduce the mechanical properties and service life of cement-based concrete. Thus, to further explore the mechanism on the microscale, this paper studied the water migration and the changes in the hydration products in white cement that was cured for 7 days at 20 °C and at different ambient relative humidities (RHs). The migration and transformation of different types of water in cement paste were studied by low-field nuclear magnetic resonance (NMR). At the same time, Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) were used to analyze semi-quantitatively the crystal phase in the hydration products. The results showed that in the first 7 days of the curing process, the content of the different types of water and the hydration products in the cement samples were influenced by the ambient RH. The total water content of the samples will decrease with the decrease in the RH; when the RH decreases to 54% or below, the chemically bound water in the samples will increase with the decline in the RH. Additionally, when the ambient RH is lower than 54%, the grossular will gradually transform into hydrogrossular crystals with the decrease in the RH, and the hibschite with less chemically bound water will transform into katoite with more chemically bound water. In future research, the water migration and hydrate changes under different curing ages, drying processes, and coupling effects should be explored.

Funder

The Science and Technology Project of Tibet Department of Transportation

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

Reference39 articles.

1. Prakash, R., Raman, S.N., Subramanian, C., and Divyah, N. (2022). Handbook of Sustainable Concrete and Industrial Waste Management, Woodhead Publishing.

2. Prakash, R., Divyah, N., Srividhya, S., Avudaiappan, S., Amran, M., Raman, S.N., Guindos, P., Vatin, N.I., and Fediuk, R. (2022). Effect of steel fiber on the strength and flexural characteristics of coconut shell concrete partially blended with fly ash. Materials, 15.

3. Characterization and behavior of basalt fiber-reinforced lightweight concrete;Divyah;Struct. Concr.,2021

4. Parametric study on lightweight concrete-encased short columns under axial compression-Comparison of design codes;Divyah;Struct. Eng. Mech.,2022

5. Effect of curing humidity on the fracture properties of concrete;Mi;Constr. Build. Mater.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3