Effect of Stitching, Stitch Density, Stacking Sequences on Low-Velocity Edge Impact and Compression after Edge Impact (CAEI) Behavior of Stitched CFRP Laminates

Author:

Lai Jiamei,Peng Ze,Huang ZhichaoORCID,Li Meiyan,Mo Mingzhi,Liu Bangxiong

Abstract

Low-velocity edge impact and compression after edge impact (CAEI) behavior of stitched carbon-fiber-reinforced plastic (CFRP) laminates were experimentally investigated in the paper. Five groups, including three stacking sequences (P1, P2, P3) and two stitch densities (stitch space × stitch pitch is 10 mm × 10 mm and 15 mm × 15 mm) of stitched/unstitched CFRP laminates, were prepared by the VARTM technique and subjected to low-velocity edge impact and compression after edge impact experiments. The damage of CFRP laminates was detected by optical observation and micro-CT. The effects of stitching, stitch density, stacking sequences and impact energy on properties of edge impact and CAEI were discussed. The results show that the damage of edge impact of stitched laminates is smaller than that of unstitched laminates. The main failure mode of CAEI of the unstitched laminates is delamination and that of the stitched laminates is global buckling. The addition of stitches can effectively improve the edge impact resistance and damage tolerance of CFRP laminates. Compared with the unstitched laminates with the same stacking sequence, the peak impact force of the laminates with stitch density 15 mm × 15 mm increases by 5.61–12.43%, and the increase in residual compression strength is up to 5–20.9%. The peak impact force of the laminates with stitch density 10 mm × 10 mm increases by 8.1–31.4%, and the increase in residual compression strength is up to 24.2–27%. Compared with the other two stacking sequences (P1 and P2), the stacking sequence P3 has excellent resistance of edge impact and CAEI properties.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

Reference31 articles.

1. In-plane compression response of woven CFRP composite after low-velocity impact: Modelling and experiment;Yang;Thin-Walled Struct.,2021

2. Mechanical Response of CFRP Laminates Subjected to Low-Velocity Oblique Impact;Duan;Appl. Comp. Mater.,2022

3. Edge impact damage scenario on stiffened composite structure;Bouvet;J. Comp. Mater.,2015

4. An experimental and numerical investigation on low-velocity impact damage and compression-after-impact behavior of composite laminates;Tuo;Comp. Part B Eng.,2019

5. Psarras, S., Muñoz, R., Ghajari, M., Robinson, P., and Furfari, D. (2016). Smart Intelligent Aircraft Structures, Springer.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3