Abstract
A mobile edge computing (MEC)-enabled blockchain system is proposed in this study for secure data storage and sharing in internet of things (IoT) networks, with the MEC acting as an overlay system to provide dynamic computation offloading services. Considering latency-critical, resource-limited, and dynamic IoT scenarios, an adaptive system resource allocation and computation offloading scheme is designed to optimize the scalability performance for MEC-enabled blockchain systems, wherein the scalability is quantified as MEC computational efficiency and blockchain system throughput. Specifically, we jointly optimize the computation offloading policy and block generation strategy to maximize the scalability of MEC-enabled blockchain systems and meanwhile guarantee data security and system efficiency. In contrast to existing works that ignore frequent user movement and dynamic task requirements in IoT networks, the joint performance optimization scheme is formulated as a Markov decision process (MDP). Furthermore, we design a deep deterministic policy gradient (DDPG)-based algorithm to solve the MDP problem and define the multiple and variable number of consecutive time slots as a decision epoch to conduct model training. Specifically, DDPG can solve an MDP problem with a continuous action space and it only requires a straightforward actor–critic architecture, making it suitable for tackling the dynamics and complexity of the MEC-enabled blockchain system. As demonstrated by simulations, the proposed scheme can achieve performance improvements over the deep Q network (DQN)-based scheme and some other greedy schemes in terms of long-term transactional throughput.
Funder
National Key R&D Program of China
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献