Joint Optimization for Mobile Edge Computing-Enabled Blockchain Systems: A Deep Reinforcement Learning Approach

Author:

Hu ZhuoerORCID,Gao HuiORCID,Wang Taotao,Han DaoqiORCID,Lu Yueming

Abstract

A mobile edge computing (MEC)-enabled blockchain system is proposed in this study for secure data storage and sharing in internet of things (IoT) networks, with the MEC acting as an overlay system to provide dynamic computation offloading services. Considering latency-critical, resource-limited, and dynamic IoT scenarios, an adaptive system resource allocation and computation offloading scheme is designed to optimize the scalability performance for MEC-enabled blockchain systems, wherein the scalability is quantified as MEC computational efficiency and blockchain system throughput. Specifically, we jointly optimize the computation offloading policy and block generation strategy to maximize the scalability of MEC-enabled blockchain systems and meanwhile guarantee data security and system efficiency. In contrast to existing works that ignore frequent user movement and dynamic task requirements in IoT networks, the joint performance optimization scheme is formulated as a Markov decision process (MDP). Furthermore, we design a deep deterministic policy gradient (DDPG)-based algorithm to solve the MDP problem and define the multiple and variable number of consecutive time slots as a decision epoch to conduct model training. Specifically, DDPG can solve an MDP problem with a continuous action space and it only requires a straightforward actor–critic architecture, making it suitable for tackling the dynamics and complexity of the MEC-enabled blockchain system. As demonstrated by simulations, the proposed scheme can achieve performance improvements over the deep Q network (DQN)-based scheme and some other greedy schemes in terms of long-term transactional throughput.

Funder

National Key R&D Program of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3