Abstract
Deep learning (DL)-based modulation recognition methods of underwater acoustic communication signals are mostly applied to a single hydrophone reception scenario. In this paper, we propose a novel end-to-end multihydrophone fusion network (MHFNet) for multisensory reception scenarios. MHFNet consists of a feature extraction module and a fusion module. The feature extraction module extracts the features of the signals received by the multiple hydrophones. Then, through the neural network, the fusion module fuses and classifies the features of the multiple signals. MHFNet takes full advantage of neural networks and multihydrophone reception to effectively fuse signal features for realizing improved modulation recognition performance. Experimental results on simulation and practical data show that MHFNet is superior to other fusion methods. The classification accuracy is improved by about 16%.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Reference16 articles.
1. Distributed Automatic Modulation Classification with Multiple Sensors;Wimalajeewa;IEEE Sens. J.,2010
2. Enhancement of underwater acoustic signal based on denoising automatic-encoder;Yin;J. Commun.,2019
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献