Estimating Sentence-like Structure in Synthetic Languages Using Information Topology

Author:

Back Andrew D.ORCID,Wiles JanetORCID

Abstract

Estimating sentence-like units and sentence boundaries in human language is an important task in the context of natural language understanding. While this topic has been considered using a range of techniques, including rule-based approaches and supervised and unsupervised algorithms, a common aspect of these methods is that they inherently rely on a priori knowledge of human language in one form or another. Recently we have been exploring synthetic languages based on the concept of modeling behaviors using emergent languages. These synthetic languages are characterized by a small alphabet and limited vocabulary and grammatical structure. A particular challenge for synthetic languages is that there is generally no a priori language model available, which limits the use of many natural language processing methods. In this paper, we are interested in exploring how it may be possible to discover natural ‘chunks’ in synthetic language sequences in terms of sentence-like units. The problem is how to do this with no linguistic or semantic language model. Our approach is to consider the problem from the perspective of information theory. We extend the basis of information geometry and propose a new concept, which we term information topology, to model the incremental flow of information in natural sequences. We introduce an information topology view of the incremental information and incremental tangent angle of the Wasserstein-1 distance of the probabilistic symbolic language input. It is not suggested as a fully viable alternative for sentence boundary detection per se but provides a new conceptual method for estimating the structure and natural limits of information flow in language sequences but without any semantic knowledge. We consider relevant existing performance metrics such as the F-measure and indicate limitations, leading to the introduction of a new information-theoretic global performance based on modeled distributions. Although the methodology is not proposed for human language sentence detection, we provide some examples using human language corpora where potentially useful results are shown. The proposed model shows potential advantages for overcoming difficulties due to the disambiguation of complex language and potential improvements for human language methods.

Funder

University of Queensland

Trusted Autonomous Systems Defence Cooperative Research Centre

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Estimation of Statistical Manifold Properties of Natural Sequences using Information Topology;2023 IEEE Statistical Signal Processing Workshop (SSP);2023-07-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3