Mapping Land Use/Cover Dynamics of the Yellow River Basin from 1986 to 2018 Supported by Google Earth Engine

Author:

Ji Qiulei,Liang Wei,Fu Bojie,Zhang Weibin,Yan Jianwu,Lü Yihe,Yue Chao,Jin Zhao,Lan Zhiyang,Li Siya,Yang Pan

Abstract

Changes in the land use/cover alter the Earth system processes and affect the provision of ecosystem services, posing a challenge to achieve sustainable development. In the past few decades, the Yellow River (YR) basin faced enormous social and environmental sustainability challenges associated with environmental degradation, soil erosion, vegetation restoration, and economic development, which makes it important to understand the long-term land use/cover dynamics of this region. Here, using three decades of Landsat imagery (17,080 images) and incorporating physiography data, we developed an effective annual land use/cover mapping framework and provided a set of 90 m resolution continuous annual land use/cover maps of the YR basin from 1986 to 2018 based on the Google Earth Engine and the Classification and Regression Trees algorithm. The independent random sampling validations based on the field surveys (640 points) and Google Earth (3456 points) indicated that the overall accuracy of these maps is 78.3% and 80.0%, respectively. The analysis of the land system of the YR basin showed that this region presents complex temporal and spatial changes, and the main change patterns include no change or little change, cropland loss and urban expansion, grassland restoration, increase in orchard and terrace, and increase in forest during the entire study period. The major land use/cover change has occurred in the transitions from forests, grasslands, and croplands to the class of orchard and terrace (19.8% of all change area), which not only increase the greenness but also raised the income, suggesting that YR progress towards sustainable development goals for livelihood security, economic growth, and ecological protection. Based on these data and analysis, we can further understand the role of the land system in the mutual feedback between society and the environment, and provide support for ecological conservation, high-quality development, and the formulation of sustainable management policies in this basin, highlighting the importance of continuous land use/cover information for understanding the interactions between the human and natural systems.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Fundamental Research Funds for the Central Universities, Shaanxi Normal University

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3