Performance of a High-Speed Pyroelectric Receiver as Cryogen-Free Detector for Terahertz Absorption Spectroscopy Measurements

Author:

Wubs Jente R.1ORCID,Macherius Uwe1ORCID,Lü Xiang2ORCID,Schrottke Lutz2ORCID,Budden Matthias3ORCID,Kunsch Johannes4ORCID,Weltmann Klaus-Dieter1ORCID,van Helden Jean-Pierre H.1ORCID

Affiliation:

1. Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany

2. Paul-Drude-Institut für Festkörperelektronik, Leibniz-Institut im Forschungsverbund Berlin e. V., Hausvogteiplatz 5–7, 10117 Berlin, Germany

3. WiredSense GmbH, Luruper Hauptstr. 1, 22547 Hamburg, Germany

4. Laser Components Germany GmbH, Werner-von-Siemens-Str. 15, 82140 Olching, Germany

Abstract

The application of terahertz (THz) radiation in scientific research as well as in applied and commercial technology has expanded rapidly in recent years. One example is the progress in high-resolution THz spectroscopy based on quantum cascade lasers, which has enabled new observations in astronomy, atmospheric research, and plasma diagnostics. However, the lack of easy-to-use and miniaturised detectors has hampered the development of compact THz spectroscopy systems out of the laboratory environment. In this paper, we introduce a new high-speed pyroelectric receiver as a cryogen-free detector for THz absorption spectroscopy. Its performance is characterised by absorption spectroscopy measurements on a reference gas cell (RGC) with ammonia using a tunable THz quantum cascade laser at approximately 4.75 THz as the light source. It is shown that the receiver can record spectra up to 281 Hz without any artefacts to the observed spectral absorption profile, and the results reproduce the known pressure of ammonia in the RGC. This demonstrates that the pyroelectric receiver can be reliably used as an alternative to helium-cooled bolometers for absorption spectroscopy measurements in the THz range, with its main advantages being the high bandwidth, compactness, relatively low cost, and room-temperature operation. Its simplicity and high sensitivity make this receiver a key component for compact THz spectroscopy systems.

Funder

Leibniz Gemeinschaft

Publisher

MDPI AG

Reference28 articles.

1. The 2023 terahertz science and technology roadmap;Leitenstorfer;J. Phys. D Appl. Phys.,2023

2. The 2017 terahertz science and technology roadmap;Dhillon;J. Phys. D Appl. Phys.,2017

3. Quantum cascade lasers: 20 years of challenges;Vitiello;Opt. Express,2015

4. Terahertz semiconductor-heterostructure laser;Tredicucci;Nature,2002

5. Terahertz quantum-cascade lasers;Williams;Nat. Photonics,2007

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Terahertz spectrometers: A key tool bridging the electronics–photonics gap;Optics & Laser Technology;2025-02

2. Terahertz Quantum-Cascade Lasers: From Design to Applications;IEEE Transactions on Terahertz Science and Technology;2024-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3