Attention-Oriented CNN Method for Type 2 Diabetes Prediction

Author:

Zhao Jian123,Gao Hanlin123,Yang Chen245,An Tianbo123,Kuang Zhejun123ORCID,Shi Lijuan235

Affiliation:

1. College of Computer Science and Technology, Changchun University, Changchun 130022, China

2. Jilin Provincial Key Laboratory of Human Health Status Identification Function & Enhancement, Changchun 130022, China

3. Key Laboratory of Intelligent Rehabilitation and Barrier-Free for the Disabled, Changchun University, Ministry of Education, Changchun 130022, China

4. College of Cyber Security, Changchun University, Changchun 130022, China

5. College of Electronic Information Engineering, Changchun University, Changchun 130012, China

Abstract

Diabetes is caused by insulin deficiency or impaired biological action, and long-term hyperglycemia leads to a variety of tissue damage and dysfunction. Therefore, the early prediction of diabetes and timely intervention and treatment are crucial. This paper proposes a robust framework for the prediction and diagnosis of type 2 diabetes (T2DM) to aid in diabetes applications in clinical diagnosis. The data-preprocessing stage includes steps such as outlier removal, missing value filling, data standardization, and assigning class weights to ensure the quality and consistency of the data, thereby improving the performance and stability of the model. This experiment used the National Health and Nutrition Examination Survey (NHANES) dataset and the publicly available PIMA Indian dataset (PID). For T2DM classification, we designed a convolutional neural network (CNN) and proposed a novel attention-oriented convolutional neural network (SECNN) through the channel attention mechanism. To optimize the hyperparameters of the model, we used grid search and K-fold cross-validation methods. In addition, we also comparatively analyzed various machine learning (ML) models such as support vector machine (SVM), logistic regression (LR), decision tree (DT), random forest (RF), and artificial neural network (ANN). Finally, we evaluated the performance of the model using performance evaluation metrics such as precision, recall, F1-Score, accuracy, and AUC. Experimental results show that the SECNN model has an accuracy of 94.12% on the NHANES dataset and an accuracy of 89.47% on the PIMA Indian dataset. SECNN models and CNN models show significant improvements in diabetes prediction performance compared to traditional ML models. The comparative analysis of the SECNN model and the CNN model has significantly improved performance, further verifying the advantages of introducing the channel attention mechanism. The robust diabetes prediction framework proposed in this article establishes an effective foundation for diabetes diagnosis and prediction, and has a positive impact on the development of health management and medical industries.

Funder

Jilin Provincial Department of Science and Technology

Publisher

MDPI AG

Reference52 articles.

1. Diabetes in developing countries;Misra;J. Diabetes,2019

2. Mechanisms of diabetic complications;Forbes;Physiol. Rev.,2013

3. Classification and diagnosis of diabetes;Care;Diabetes Care,2017

4. Type 1 diabetes;Atkinson;Lancet,2014

5. Prediction and pathogenesis in type 1 diabetes;Ziegler;Immunity,2010

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3