Federated Learning for Intrusion Detection in the Critical Infrastructures: Vertically Partitioned Data Use Case

Author:

Novikova EvgeniaORCID,Doynikova ElenaORCID,Golubev Sergey

Abstract

One of the challenges in the Internet of Things systems is the security of the critical data, for example, data used for intrusion detection. The paper research construction of an intrusion detection system that ensures the confidentiality of critical data at a given level of intrusion detection accuracy. For this goal, federated learning is used to train an intrusion detection model. Federated learning is a computational model for distributed machine learning that allows different collaborating entities to train one global model without sharing data. This paper considers the case when entities have data that are different in attributes. Authors believe that it is a common situation for the critical systems constructed using Internet of Things (IoT) technology, when industrial objects are monitored by different sets of sensors. To evaluate the applicability of the federated learning for this case, the authors developed an approach and an architecture of the intrusion detection system for vertically partitioned data that consider the principles of federated learning and conducted the series of experiments. To model vertically partitioned data, the authors used the Secure Water Treatment (SWaT) data set that describes the functioning of the water treatment facility. The conducted experiments demonstrate that the accuracy of the intrusion detection model trained using federated learning is compared with the accuracy of the intrusion detection model trained using the centralized machine learning model. However, the computational efficiency of the learning and inference process is currently extremely low. It is explained by the application of homomorphic encryption for input data protection from different data owners or data sources. This defines the necessity to elaborate techniques for generating attributes that could model horizontally partitioned data even for the cases when the collaborating entities share datasets that differ in their attributes.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Reference50 articles.

1. Intrusion detection systems for IoT-based smart environments: a survey

2. ENISA Report https://www.enisa.europa.eu/publications/baseline-security-recommendations-for-iot

3. A Security Framework for the Internet of Things in the Future Internet Architecture

4. Urban Transition in the Era of the Internet of Things: Social Implications and Privacy Challenges

5. General Data Protection Regulation (GDPR) https://gdpr-info.eu/

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3