Abstract
Particulate matter (PM) <10 μm in size represents an extremely heterogeneous and variable group of objects that can penetrate the human respiratory tract. The present study aimed to isolate samples of coarse and ultrafine PM at some distance from polluting industries (1–1.5 km from the border of open-cast mines). PM was collected from snow samples which allowed the accumulation of a relatively large amount of ultrafine particles (UFPs) (50–60 mg) from five objects: three open-cast mines, coal power plants, and control territories. The chemical composition of PM was examined using absorption spectroscopy, luminescence spectroscopy, high-performance liquid chromatography, X-ray diffraction (XRD), and X-ray fluorescence (XRF) analyses of solid particle material samples. Toxicity was assessed in human MRC-5 lung fibroblasts after 6 h of in vitro exposure to PM samples. The absorption spectra of all the samples contained a wide non-elementary absorption band with a maximum of 270 nm. This band is usually associated with the absorption of dissolved organic matter (DOM). The X-ray fluorescence spectra of all the studied samples showed intense lines of calcium and potassium and less intense lines of silicon, sulfur, chlorine, and titanium. The proliferation of MRC-5 cells that were exposed to PM0.1 samples was significantly (p < 0.01) lower than that of MRC-5 cells exposed to PM10 at the same concentration, except for PM samples obtained from the control point. PM0.1 samples—even those that were collected from control territories—showed increased genotoxicity (micronucleus, ‰) compared to PM10. The study findings suggest that UFPs deserve special attention as a biological agent, distinct from larger PMs.
Funder
Russian Foundation for Basic Research
Subject
Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献