Ce Doping Effects on the Hydrogen Sensing Properties of Graphene/SnO2-Based Sensors

Author:

Jiao Zijie1,Wang Lingyun1,Xu Xiaotong1,Xiang Jie12,Huang Shuiming12,Lu Tao2,Hou Xueling1ORCID

Affiliation:

1. School of Materials Science and Engineering, Shanghai University, Shanghai 200072, China

2. Shanghai King Material Technology Ltd., East Huiwang Road, Jiading, Shanghai 201815, China

Abstract

The development of a sensor capable of selectively detecting hydrogen levels in the environment holds immense importance for ensuring the safer utilization of hydrogen energy. In this study, a hydrogen sensor made of Ce-doped single-layer graphene (SLG)/SnO2 composite material was fabricated using a hydrothermal method. The study examined the impact of varying Ce doping concentrations on the hydrogen sensing capabilities of the SLG/SnO2 matrix. The results show that the SLG/SnO2 hydrogen sensor doped with 2 mol% Ce demonstrated optimal performance at a humidity of 20%. It operated most efficiently at 250 °C, with a response of 2.49, representing a 25.75% improvement over the undoped sample. The response/recovery times were 0.46/3.92 s, which are 54.9% shorter than those of the undoped sample. The enhancement in hydrogen sensitivity stems from the synergistic effect of Ce and SLG, which facilitates the coexistence of n–n and p–n heterojunctions, thereby increasing carrier mobility and refining grain structure. Analysis via X-ray photoelectron spectroscopy (XPS) reveals that Ce increases the material’s oxygen vacancy concentration, enhancing its hydrogen sensitivity. Ce-doped SLG/SnO2, with its robust hydrogen sensitivity, represents one of the leading candidates for future hydrogen gas sensors.

Funder

National Natural Science Foundation of China

Foundation Strengthening Program in the Technical Field of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3