Affiliation:
1. School of Materials Science and Engineering, Shanghai University, Shanghai 200072, China
2. Shanghai King Material Technology Ltd., East Huiwang Road, Jiading, Shanghai 201815, China
Abstract
The development of a sensor capable of selectively detecting hydrogen levels in the environment holds immense importance for ensuring the safer utilization of hydrogen energy. In this study, a hydrogen sensor made of Ce-doped single-layer graphene (SLG)/SnO2 composite material was fabricated using a hydrothermal method. The study examined the impact of varying Ce doping concentrations on the hydrogen sensing capabilities of the SLG/SnO2 matrix. The results show that the SLG/SnO2 hydrogen sensor doped with 2 mol% Ce demonstrated optimal performance at a humidity of 20%. It operated most efficiently at 250 °C, with a response of 2.49, representing a 25.75% improvement over the undoped sample. The response/recovery times were 0.46/3.92 s, which are 54.9% shorter than those of the undoped sample. The enhancement in hydrogen sensitivity stems from the synergistic effect of Ce and SLG, which facilitates the coexistence of n–n and p–n heterojunctions, thereby increasing carrier mobility and refining grain structure. Analysis via X-ray photoelectron spectroscopy (XPS) reveals that Ce increases the material’s oxygen vacancy concentration, enhancing its hydrogen sensitivity. Ce-doped SLG/SnO2, with its robust hydrogen sensitivity, represents one of the leading candidates for future hydrogen gas sensors.
Funder
National Natural Science Foundation of China
Foundation Strengthening Program in the Technical Field of China