Optimization Design of Submerged-Entry-Nozzle Structure Using NSGA-II Genetic Algorithm in Ultra-Large Beam-Blank Continuous-Casting Molds

Author:

Deng Nanzhou1ORCID,Duan Jintao2,Li Yibo13ORCID,Gao Qi2,Deng Yulong1,Ni Weihua1

Affiliation:

1. Light Alloy Research Institute, Central South University, Changsha 410017, China

2. China National Heavy Machinery Research Institute Co., Ltd., Xi’an 710054, China

3. College of Mechanical and Electrical Engineering, Central South University, Changsha 410012, China

Abstract

To achieve uniform cooling and effective homogenization control in ultra-large beam-blank molds necessitates the optimization of submerged-entry-nozzle (SEN) structures. This study employed computational fluid dynamic (CFD) modeling to investigate the impact of two-port and three-port SEN configurations on fluid flow characteristics, free-surface velocities, temperature fields, and solidification behaviors. Subsequently, integrating numerical simulations with the non-dominated sorting genetic algorithm II (NSGA-II) and metallurgical quality-control expertise facilitated the multi-objective optimization of a three-port SEN structure suitable for beam-blank molds. The optimized parameters enabled the three-port SEN to deliver molten steel to the meniscus at an appropriate velocity while mitigating harmful effects such as SEN port backflow, excessive surface temperature differences, and shell thickness reduction due to fluid flow. The results indicated that the three-port SEN enhanced the molten-steel flow pattern and mitigated localized shell thinning compared with the two-port SEN. Additionally, the optimized design (op2) of the three-port SEN exhibited reduced boundary layer separation and superior fluid dynamics performance over the initial three-port SEN configuration.

Funder

Sinomach

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3