Experimental Study on Shear Strengthening of Reinforced Concrete Beams by Fabric-Reinforced Cementitious Matrix

Author:

Jung Chanseo1,Seo Yujae2,Hong Junseo1,Heo Jinhyeong1,Cho Hae-Chang3,Ju Hyunjin4ORCID

Affiliation:

1. Department of Architecture and Architectural Engineering, Hankyong National University, Jungang-ro 327, Anseong 17579, Republic of Korea

2. Architecture Convergence Laboratory of Industry-Academic Cooperation Foundation, Hankyong National University, Jungang-ro 327, Anseong 17579, Republic of Korea

3. Technology Center, Dream Structural Engineers Co., Ltd., Hwaseong 18471, Republic of Korea

4. School of Architecture and Design Convergence, Hankyong National University, Jungang-ro 327, Anseong 17579, Republic of Korea

Abstract

In this study, an experiment was conducted to investigate the shear performance of reinforced concrete (RC) beams strengthened using fabric-reinforced cementitious matrices (FRCM). Four reinforced concrete beams, including a control specimen, were fabricated, and the shear strengthening effect of the FRCM was investigated on eight shear specimens, with the strengthening type and shear reinforcement as key variables. In particular, the digital image correlation (DIC) technique was applied to closely analyze the deformation of reinforced concrete beams subjected to shear forces. The average shear strain–shear stress curve of each specimen was derived, and the contributions of shear and bending to the vertical deflection and the change in the principal strain angle with increasing shear force were analyzed. The experiment results showed that all specimens failed with diagonal cracks within the shear span. In the specimens without shear reinforcement, the shear strength increased by up to 65% according to the FRCM strengthening, while in the specimens with shear reinforcement, only the sided bond strengthened specimen showed a strength increase of 16% compared to the control specimen. Based on displacement data of the DIC, it was confirmed that FRCM strengthening can control the deformation of the RC beam. To evaluate the shear strength of the FRCM-strengthened RC beams, a shear strength model was proposed by considering the contributions of the concrete section, shear reinforcement, and FRCM. The proposed model was capable of reasonably evaluating the shear strength of RC beams strengthened with FRCM, considering the shear contribution of FRCM and bond capacity between FRCM and concrete substrate, in which the shear strength of specimens was underestimated by 28% to 35%.

Funder

Technology Development Program

Ministry of SMEs and Startups

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3