Study on Laser Transmission Welding Technology of TC4 Titanium Alloy and High-Borosilicate Glass

Author:

Chen Changjun12ORCID,Li Lei1,Zhang Min1,Xu Mengxuan1,Zhang Wei3

Affiliation:

1. Laser Processing Research Center, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215131, China

2. State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China

3. Shi-Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, 62 Wencui Road, Shenyang 110016, China

Abstract

As the demand for high-performance dissimilar material joining continues to increase in fields such as aerospace, biomedical engineering, and electronics, the welding technology of dissimilar materials has become a focus of research. However, due to the differences in material properties, particularly in the welding between metals and non-metals, numerous challenges arise. The formation and quality of the weld seam are strongly influenced by laser process parameters. In this study, successful welding of high-borosilicate glass to a TC4 titanium alloy, which was treated with high-temperature oxidation, was achieved using a millisecond pulsed laser. A series of process parameter comparison experiments were designed, and the laser welding behavior of the titanium alloy and glass under different process parameters was investigated using scanning electron microscopy (SEM) and a universal testing machine as the primary analysis and testing equipment. The results revealed that changes in process parameters significantly affect the energy input and accumulation during the welding process. The maximum joint strength of 60.67 N was obtained at a laser power of 180 W, a welding speed of 3 mm/s, a defocus distance of 0 mm, and a frequency of 10 Hz. Under the action of the laser, the two materials mixed and penetrated into the molten pool, thus achieving a connection. A phase, Ti5Si3, was detected at the fracture site, indicating that both mechanical bonding and chemical bonding reactions occurred between the high-borosilicate glass and the TC4 titanium alloy during the laser welding process.

Funder

Jiangsu Province Key Research and Development Program

Open Fund for State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology

Open Fund for Jiangsu Key Laboratory of Advanced Manufacturing Technology

Open Fund for National Key Laboratory for Remanufactury

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3