Theoretical Analysis of Stacking Fault Energy, Elastic Properties, Electronic Properties, and Work Function of MnxCoCrFeNi High-Entropy Alloy

Author:

Sun Fenger12,Zhang Guowei2,Xu Hong2,Li Dongyang3,Fu Yizheng2

Affiliation:

1. School of Intelligent Manufacturing Industry, Shanxi University of Electronic Science and Technology, Linfen 041000, China

2. School of Material Science and Engineering, North University of China, Taiyuan 030051, China

3. Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada

Abstract

The effects of different Mn concentrations on the generalized stacking fault energies (GSFE) and elastic properties of MnxCoCrFeNi high-entropy alloys (HEAs) have been studied via first-principles, which are based on density functional theory. The relationship of different Mn concentrations with the chemical bond and surface activity of MnxCoCrFeNi HEAs are discussed from the perspectives of electronic structure and work function. The results show that the plastic deformation of MnxCoCrFeNi HEAs can be controlled via dislocation-mediated slip. But with the increase in Mn concentration, mechanical micro twinning can still be formed. The deformation resistance, shear resistance, and stiffness of MnxCoCrFeNi HEAs increase with the enhancement of Mn content. Accordingly, in the case of increased Mn concentration, the weakening of atomic bonds in MnxCoCrFeNi HEAs leads to the increase in alloy instability, which improves the possibility of dislocation.

Funder

Shanxi “1331 Project”

Talent Introduction of Shanxi Electronic Science and Technology Institute

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3