Sulfur Induces Resistance against Canker Caused by Pseudomonas syringae pv. actinidae via Phenolic Components Increase and Morphological Structure Modification in the Kiwifruit Stems

Author:

Gu Guifei,Yang Sen,Yin Xianhui,Long Youhua,Ma Yue,Li Rongyu,Wang Guoli

Abstract

Bacterial canker caused by Pseudomonas syringae pv. actinidiae (Psa) has led to considerable losses in all major kiwifruit-growing areas. There are no commercial products in the market to effectively control this disease. Therefore, the defense resistance of host plants is a prospective option. In our previous study, sulfur could improve the resistance of kiwifruit to Psa infection. However, the mechanisms of inducing resistance remain largely unclear. In this study, disease severity and protection efficiency were tested after applying sulfur, with different concentrations in the field. The results indicated that sulfur could reduce the disease index by 30.26 and 31.6 and recorded high protection efficiency of 76.67% and 77.00% after one and two years, respectively, when the concentration of induction treatments was 2.0 kg/m3. Ultrastructural changes in kiwifruit stems after induction were demonstrated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and the activities of phenylalanine ammonia-lyase (PAL), peroxidase (POD) and polyphenol oxidase (PPO), and the accumulation of lignin were determined by biochemical analyses. Our results showed that the morphological characteristics of trichomes and lenticels of kiwifruit stem were in the best defensive state respectively when the sulfur concentration was 3.0 kg/m3 and 1.5 kg/m3. Meanwhile, in the range of 0.5 to 2.0 kg/m3, the sulfur could promote the chloroplast and mitochondria of kiwifruit stems infected with Psa to gradually return to health status, increasing the thickness of the cell wall. In addition, sulfur increased the activities of PAL, POD and PPO, and promoted the accumulation of lignin in kiwifruit stems. Moreover, the sulfur protection efficiency was positively correlated with PPO activity (p < 0.05) and lignin content (p < 0.01), which revealed that the synergistic effect of protective enzyme activity and the phenolic metabolism pathway was the physiological effect of sulfur-induced kiwifruit resistance to Psa. This evidence highlights the importance of lignin content in kiwifruit stems as a defense mechanism in sulfur-induced resistance. These results suggest that sulfur enhances kiwifruit canker resistance via an increase in phenolic components and morphology structure modification in the kiwifruit stems. Therefore, this study could provide insights into sulfur to control kiwifruit canker caused by Psa.

Funder

Agricultural Research Project of Guizhou Provincial Department of Science and Technology

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3