Abstract
TNF is a proinflammatory cytokine that is critical for the coordination of tissue homeostasis. RIPK1 and TRADD are the main participants in the transduction of TNF signaling. However, data on the cell fate-controlling functions of both molecules are quite controversial. Here, we address the functions of RIPK1 and TRADD in TNF signaling by generating RIPK1- or TRADD-deficient human cell lines. We demonstrate that RIPK1 is relevant for TNF-induced apoptosis and necroptosis in conditions with depleted IAPs. In addition, TRADD is dispensable for necroptosis but required for apoptosis. We reveal a new possible function of TRADD as a negative regulator of NIK stabilization and subsequent ripoptosome formation. Furthermore, we show that RIPK1 and TRADD do not appear to be essential for the activation of MAPK signaling. Moreover, partially repressing NF-κB activation in both RIPK1 and TRADD KO cells does not result in sensitization to TNF alone due to the absence of NIK stabilization. Importantly, we demonstrate that RIPK1 is essential for preventing TRADD from undergoing TNF-induced ubiquitination and degradation. Taken together, our findings provide further insights into the specific functions of RIPK1 and TRADD in the regulation of TNF-dependent signaling, which controls the balance between cell death and survival.
Funder
RWTH Aachen University
Deutsche Forschungsgemeinschaft
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献