Simu-D: A Simulator-Descriptor Suite for Polymer-Based Systems under Extreme Conditions

Author:

Herranz MiguelORCID,Martínez-Fernández DanielORCID,Ramos Pablo Miguel,Foteinopoulou Katerina,Karayiannis Nikos Ch.ORCID,Laso Manuel

Abstract

We present Simu-D, a software suite for the simulation and successive identification of local structures of atomistic systems, based on polymers, under extreme conditions, in the bulk, on surfaces, and at interfaces. The protocol is built around various types of Monte Carlo algorithms, which include localized, chain-connectivity-altering, identity-exchange, and cluster-based moves. The approach focuses on alleviating one of the main disadvantages of Monte Carlo algorithms, which is the general applicability under a wide range of conditions. Present applications include polymer-based nanocomposites with nanofillers in the form of cylinders and spheres of varied concentration and size, extremely confined and maximally packed assemblies in two and three dimensions, and terminally grafted macromolecules. The main simulator is accompanied by a descriptor that identifies the similarity of computer-generated configurations with respect to reference crystals in two or three dimensions. The Simu-D simulator-descriptor can be an especially useful tool in the modeling studies of the entropy- and energy-driven phase transition, adsorption, and self-organization of polymer-based systems under a variety of conditions.

Funder

MINECO/FEDER

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference125 articles.

1. Computer Simulation of Liquids;Allen,1987

2. Understanding Molecular Simulation: From Algorithms to Applications;Frenkel,2002

3. A Guide to Monte Carlo Simulations in Statistical Physics;Landau,2014

4. The Art of Molecular Dynamics Simulation;Rapaport,2004

5. Molecular Modelling: Principles and Applications;Leach,2001

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3