Author:
Takashima Yuusuke,Haraguchi Masanobu,Naoi Yoshiki
Abstract
Owing to its versatility, optical refractive index (RI) sensors with compact size and high chemical stability are very suitable for a wide range of the applications in the internet of things (IoT), such as immunosensor, disease detection, and blood mapping. In this study, a RI sensor with very simple system and high chemical stability was developed using GaN-based high-contrast grating (HCG). The designed HCG pattern was fabricated on GaN-film grown on c-plane sapphire substrate. The fabricated GaN-HCG sensor can detect minuscule RI change of 1.71 × 10–3 with extreme simple surface normal irradiation system. The light behavior inside the GaN-HCG was discussed using numerical electromagnetic field calculation, and the deep understand of the sensing mechanism was provided. The simple system and very high chemical stability of our sensor exploit RI sensing applications in IoT society.
Funder
Japan Society for the Promotion of Science
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献