Smart Pack: Online Autonomous Object-Packing System Using RGB-D Sensor Data

Author:

Hong Young-DaeORCID,Kim Young-Joo,Lee Ki-Baek

Abstract

This paper proposes a novel online object-packing system which can measure the dimensions of every incoming object and calculate its desired position in a given container. Existing object-packing systems have the limitations of requiring the exact information of objects in advance or assuming them as boxes. Thus, this paper is mainly focused on the following two points: (1) Real-time calculation of the dimensions and orientation of an object; (2) Online optimization of the object’s position in a container. The dimensions and orientation of the object are obtained using an RGB-D sensor when the object is picked by a manipulator and moved over a certain position. The optimal position of the object is calculated by recognizing the container’s available space using another RGB-D sensor and minimizing the cost function that is formulated by the available space information and the optimization criteria inspired by the way people place things. The experimental results show that the proposed system successfully places the incoming various shaped objects in their proper positions.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference27 articles.

1. End-to-end learning of object grasp poses in the Amazon Robotics Challenge;Matsumoto,2020

2. Bin-Picking for Planar Objects Based on a Deep Learning Network: A Case Study of USB Packs

3. Depth Image–Based Deep Learning of Grasp Planning for Textureless Planar-Faced Objects in Vision-Guided Robotic Bin-Picking

4. Multidimensional Bin Packing and Other Related Problems: A Survey http://people.math.gatech.edu/~tetali/PUBLIS/CKPT.pdf

5. Guidance and Visualization of Optimized Packing Solutions

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3