Abstract
Okadaic acid (OA) is an important liposoluble shellfish toxin distributed worldwide, and is mainly responsible for diarrheic shellfish poisoning in human beings. It has a variety of toxicities, including cytotoxicity, embryonic toxicity, neurotoxicity, and even genotoxicity. However, there is no direct evidence of its developmental toxicity in human offspring. In this study, using the chicken (Gallus gallus) embryo as the animal model, we investigated the effects of OA exposure on neurogenesis and the incidence of neural tube defects (NTDs). We found that OA exposure could cause NTDs and inhibit the neuronal differentiation. Immunofluorescent staining of pHI3 and c-Caspase3 demonstrated that OA exposure could promote cell proliferation and inhibit cell apoptosis on the developing neural tube. Besides, the down-regulation of Nrf2 and increase in reactive oxygen species (ROS) content and superoxide dismutase (SOD) activity in the OA-exposed chicken embryos indicated that OA could result in oxidative stress in early chick embryos, which might enhance the risk of the subsequent NTDs. The inhibition of bone morphogenetic protein 4 (BMP4) and Sonic hedgehog (Shh) expression in the dorsal neural tube suggested that OA could also affect the formation of dorsolateral hinge points, which might ultimately hinder the closure of the neural tube. Transcriptome and qPCR analysis showed the expression of lipopolysaccharide-binding protein (LBP), transcription factor AP-1 (JUN), proto-oncogene protein c-fos (FOS), and C-C motif chemokine 4 (CCL4) in the Toll-like receptor signaling pathway was significantly increased in the OA-exposed embryos, suggesting that the NTDs induced by OA might be associated with the Toll-like receptor signaling pathway. Taken together, our findings could advance the understanding of the embryo–fetal developmental toxicity of OA on human gestation.
Funder
National Natural Science Foundation of China
Subject
Drug Discovery,Pharmacology, Toxicology and Pharmaceutics (miscellaneous),Pharmaceutical Science
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献