Okadaic Acid Exposure Induced Neural Tube Defects in Chicken (Gallus gallus) Embryos

Author:

Jiao Yuhu,Wang Guang,Li Dawei,Li HongyeORCID,Liu Jiesheng,Yang Xuesong,Yang Weidong

Abstract

Okadaic acid (OA) is an important liposoluble shellfish toxin distributed worldwide, and is mainly responsible for diarrheic shellfish poisoning in human beings. It has a variety of toxicities, including cytotoxicity, embryonic toxicity, neurotoxicity, and even genotoxicity. However, there is no direct evidence of its developmental toxicity in human offspring. In this study, using the chicken (Gallus gallus) embryo as the animal model, we investigated the effects of OA exposure on neurogenesis and the incidence of neural tube defects (NTDs). We found that OA exposure could cause NTDs and inhibit the neuronal differentiation. Immunofluorescent staining of pHI3 and c-Caspase3 demonstrated that OA exposure could promote cell proliferation and inhibit cell apoptosis on the developing neural tube. Besides, the down-regulation of Nrf2 and increase in reactive oxygen species (ROS) content and superoxide dismutase (SOD) activity in the OA-exposed chicken embryos indicated that OA could result in oxidative stress in early chick embryos, which might enhance the risk of the subsequent NTDs. The inhibition of bone morphogenetic protein 4 (BMP4) and Sonic hedgehog (Shh) expression in the dorsal neural tube suggested that OA could also affect the formation of dorsolateral hinge points, which might ultimately hinder the closure of the neural tube. Transcriptome and qPCR analysis showed the expression of lipopolysaccharide-binding protein (LBP), transcription factor AP-1 (JUN), proto-oncogene protein c-fos (FOS), and C-C motif chemokine 4 (CCL4) in the Toll-like receptor signaling pathway was significantly increased in the OA-exposed embryos, suggesting that the NTDs induced by OA might be associated with the Toll-like receptor signaling pathway. Taken together, our findings could advance the understanding of the embryo–fetal developmental toxicity of OA on human gestation.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Drug Discovery,Pharmacology, Toxicology and Pharmaceutics (miscellaneous),Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3