Spray Drying of Chitosan Acid Salts: Process Development, Scaling Up and Physicochemical Material Characterization

Author:

de la Paz Nilia,Fernández Mirna,López OrestesORCID,Garcia Caridad,Nogueira Antonio,Torres Leonid,Turiño Wilfredo,Heinämäki JyrkiORCID

Abstract

We investigated a spray drying process for preparing water-soluble salts of high molecular weight chitosan (CH) intended for pharmaceutical excipient applications. CH was derived from chitin of marine lobster origin (Panulirus argus). The effects of organic acid (acetic or lactic acid) and the ratio (difference) of inlet/outlet air temperature (140/90 °C or 160/100 °C) on spray drying were studied. The yield of spray-dried CH salt powders ranged from 50% to 99% in laboratory and industrial-scale processes. The spray-dried dry powder of CH salts consisted of spherical agglomerated particles with an average diameter of 36.2 ± 7.0 µm (CH acetate) and 108.6 ± 11.5 µm (CH lactate). After dispersing the spray-dried CH salt powder samples in purified water, the mean particle sizes obtained for the CH acetate salts were 31.4 nm (batch A001), 33.0 nm (A002) and 44.2 nm (A003), and for the CH lactate salts 100.8 nm (batch L001), 103.2 nm (L002) and 121.8 nm (L003). The optimum process conditions for spray drying were found: an inlet air temperature of 160 ± 5 °C, an outlet temperature of 100 ± 5 °C and an atomizer disk rotational speed of 18,200 min−1. The X-ray powder diffraction (XRPD) and differential scanning calorimetry (DSC) results confirmed the amorphous state of the CH salts. The 1H nuclear magnetic resonance (NMR) and Fourier transform infrared (FT-IR) spectra of CH acetate and lactate salts verified that the spray drying process does not affect the polymer backbone. In conclusion, both laboratory and industrial-scale spray drying methods for preparing water-soluble acid salts of CH are reproducible, and the physicochemical properties of the corresponding CH acid salts are uniform.

Publisher

MDPI AG

Subject

Drug Discovery,Pharmacology, Toxicology and Pharmaceutics (miscellaneous),Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3