An Experimental Study of Different Stratified Water Intake Structures in a Deep-Water Reservoir

Author:

Liu Haitao1,Sun Shuangke1,Li Guangning1,Zheng Tiegang1,Shi Kai1

Affiliation:

1. China Institute of Water Resources and Hydropower Research, Beijing 100038, China

Abstract

For water temperature stratified reservoirs, stratified water intake structures are used to extract surface warm water to reduce the adverse effects of low-temperature discharge on river habitats and agricultural irrigation. A physical simulation method has been explored and used to conduct the comparative experimental study on the efficiency of the three types of intake structures: a traditional stoplog gate intake, a stoplog gate with a horizontal curtain and a vertical curtain upstream of the intake. In order to extend the laboratory results to the prototype, a similarity relationship for water temperature stratification was derived based on the principle of equal density stratification Froude number between the model and the prototype, as well as the functional relationship between water density and temperature. The similarity relationship makes it possible to simulate the same prototype density flow under different laboratory water temperature conditions, and this was confirmed through experiments conducted in several months with different water temperatures. Under constant water flow conditions, a stable target water temperature distribution can be formed in the experimental model through continuous stratified heating and real-time power regulation, to simulate the density flow generated by various intake operation in water temperature stratified reservoir. The relationships between the intake water temperature and the reference water temperature at intake depth in reservoir were analyzed to distinguish the difference of water intake efficiency. The experimental results showed that, the traditional stoplog gate has a relatively lower efficiency in extracting warm water affected by the lower edge expansion of the drag layer into the cold water zone below the intake elevation; by setting horizontal curtain to prevent the cold water from climbing below, it is helpful to improve the water intake efficiency; by setting vertical curtain in the upstream area of the intake, the velocity of warm water in the upper part of the drag layer increases, and the intake efficiency has been significantly improved. The above research provides a scientific approach for mechanism research and mathematical model validation of thermal density flow.

Funder

National Key Research and Development Program

State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3