Author:
Xie Jia,Wang Zhu,Yu Zhiwen,Guo Bin
Abstract
Modern healthcare practice, especially in intensive care units, produces a vast amount of multivariate time series of health-related data, e.g., multi-lead electrocardiogram (ECG), pulse waveform, blood pressure waveform and so on. As a result, timely and accurate prediction of medical intervention (e.g., intravenous injection) becomes possible, by exploring such semantic-rich time series. Existing works mainly focused on onset prediction at the granularity of hours that was not suitable for medication intervention in emergency medicine. This research proposes a Multi-Variable Hybrid Attentive Model (MVHA) to predict the impending need of medical intervention, by jointly mining multiple time series. Specifically, a two-level attention mechanism is designed to capture the pattern of fluctuations and trends of different time series. This work applied MVHA to the prediction of the impending intravenous injection need of critical patients at the intensive care units. Experiments on the MIMIC Waveform Database demonstrated that the proposed model achieves a prediction accuracy of 0.8475 and an ROC-AUC of 0.8318, which significantly outperforms baseline models.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Reference68 articles.
1. Teamwork in the intensive care unit.
2. Critical care - where have we been and where are we going?
3. Prediction of cardiac arrest from physiological signals in the pediatric ICU;Tonekaboni;Proceedings of the Machine Learning for Healthcare Conference PMLR,2018
4. Time-Frequency Signal Analysis and Processing: A Comprehensive Reference;Boashash,2015
5. A review of big data applications of physiological signal data
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献