Enabling Timely Medical Intervention by Exploring Health-Related Multivariate Time Series with a Hybrid Attentive Model

Author:

Xie Jia,Wang Zhu,Yu Zhiwen,Guo Bin

Abstract

Modern healthcare practice, especially in intensive care units, produces a vast amount of multivariate time series of health-related data, e.g., multi-lead electrocardiogram (ECG), pulse waveform, blood pressure waveform and so on. As a result, timely and accurate prediction of medical intervention (e.g., intravenous injection) becomes possible, by exploring such semantic-rich time series. Existing works mainly focused on onset prediction at the granularity of hours that was not suitable for medication intervention in emergency medicine. This research proposes a Multi-Variable Hybrid Attentive Model (MVHA) to predict the impending need of medical intervention, by jointly mining multiple time series. Specifically, a two-level attention mechanism is designed to capture the pattern of fluctuations and trends of different time series. This work applied MVHA to the prediction of the impending intravenous injection need of critical patients at the intensive care units. Experiments on the MIMIC Waveform Database demonstrated that the proposed model achieves a prediction accuracy of 0.8475 and an ROC-AUC of 0.8318, which significantly outperforms baseline models.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference68 articles.

1. Teamwork in the intensive care unit.

2. Critical care - where have we been and where are we going?

3. Prediction of cardiac arrest from physiological signals in the pediatric ICU;Tonekaboni;Proceedings of the Machine Learning for Healthcare Conference PMLR,2018

4. Time-Frequency Signal Analysis and Processing: A Comprehensive Reference;Boashash,2015

5. A review of big data applications of physiological signal data

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3