Investigation of Calcium Forms in Lichens from Travertine Sites

Author:

Ručová DajanaORCID,Đorđević TamaraORCID,Baláž MatejORCID,Weidinger Marieluise,Lang IngeborgORCID,Gajdoš Andrej,Goga MichalORCID

Abstract

Lichens are symbiotic organisms with an extraordinary capability to colonise areas of extreme climate and heavily contaminated sites, such as metal-rich habitats. Lichens have developed several mechanisms to overcome the toxicity of metals, including the ability to bind metal cations to extracellular sites of symbiotic partners and to subsequently form oxalates. Calcium is an essential alkaline earth element that is important in various cell processes. Calcium can serve as a metal ligand but can be toxic at elevated concentrations. This study investigated calcium-rich and calcium-poor sites and the lichen species that inhabit them (Cladonia sp.). The calcium content of these lichen species were analyzed, along with localized calcium oxalate formed in thalli collected from each site. The highest concentration of calcium was found in the lichen squamules, which can serve as a final deposit for detoxification. Interestingly, the highest content of calcium in Cladonia furcata was localized to the upper part of the thallus, which is the youngest. The produced calcium oxalates were species-specific. Whewellite (CaC2O4∙H2O) was formed in the case of C. furcata and weddellite (CaC2O4∙2H2O) was identified in C. foliacea.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Reference46 articles.

1. Calcium oxalate and sulphate-containing structures on the thallial surface of the lichen Ramalina lacera : response to polluted air and simulated acid rain

2. Mineral Nutrition of Plants: Principles and Perspectives;Epstein,1972

3. Principles of Plant Nutrition;Mengel,1987

4. Plant Physiology;Taiz,2002

5. Communicating with Calcium

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3