15N Natural Abundance of C3 and C4 Herbaceous Plants and Its Response to Climatic Factors along an Agro-Pastoral Zone of Northern China

Author:

Liu XianzhaoORCID,Li Yang,Zhang Yong,Su Qing,Feng TengORCID,Song Yan

Abstract

The nitrogen isotope composition of plants (δ15N) can comprehensively reflect information on climate change and ecosystems’ nitrogen cycle. By collecting common herbs and soil samples along the 400 mm isoline of mean annual precipitation (MAP) in the agro-pastoral zone of North China (APZNC) and measuring their δ15N values, the statistical characteristics of foliar δ15N of herbs and the responses of foliar δ15N to the MAP and mean annual temperature (MAT) were analyzed. The results showed that: (1) the δ15N values of all herbs investigated varied from −5.5% to 15.25%. Among them, the δ15N value range of C3 herbs (−5.5~15.00%) was wider than that of C4 herbs (−2.17~15.25%), but the average value (3.27%) of C3 herbs was significantly lower than that of C4 herbaceous plants (5.55%). This difference provides an important method for identifying plants of different photosynthetic types by nitrogen isotope technology. (2) Along the transect from northeast to southwest, the δ15N of both C3 and C4 herbs decreased with the increase in the MAP, but not significantly for C3 herbs. The inverse relationship between the nitrogen isotopic signatures of herbs and MAP is consistent with previous studies. However, the MAP in the APZNC is found to only explain a small amount of the observed variance in the δ15N herbs (C3 herbs: 10.40%; C4 herbs: 25.03%). (3) A strong negative relationship was found between δ15N of herbs and MAT across the transect (C3 herbs: −0.368%/°C; C4 herbs: −0.381%/°C), which was contrary to the global pattern and some regional patterns. There was no significant difference in the δ15N responses of two different photosynthetic herbs to temperature, but the effect of temperature on the variances of δ15N of C3 and C4 herbs was significantly greater than that of precipitation. This suggests that temperature is a key factor affecting foliar δ15N of herbs in this transect. The above findings may be of value to global change researchers studying the processes of the nitrogen cycle and gaining an insight into climate dynamics of the past.

Funder

the Natural Science Foundation of Hunan Province

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3