Abstract
Common grassland management practices affect plant and soil element stoichiometry, but the primary environmental factors driving variation in plant C/N ratios for different species in different types of grassland management remain poorly understood. We examined the three dominant C/N stoichiometric responses of plants to different land uses (moderate grazing and mowing) in the temperate meadow steppe of northern China. Our results showed that the responses of the C/N ratio of dominant plants differed according to the management practice. The relative abundance of N in plant tissues increased due to increased soil NO3−, with a consequent decrease in plant C: N in the shoots of Leymus chinensis, but the C/N ratio and nitrogen concentration in the shoots of Bromus inermis and Potentilla bifurca were relatively stable under short-term moderate grazing management. Mowing reduced the concentration of soil NH4+, thus reducing the nitrogen concentration of the roots, resulting in a decrease in the root C/N ratio of Potentilla bifurca. Structural equation model (SEM) showed that the root C/N ratio was affected by both root N and soil inorganic N, while shoot C/N ratio was only affected by the soil inorganic N. Our findings provide a mechanistic understanding of the responses of plant C/N ratio to land use change. The species-level responses of plant stoichiometry to human-managed grasslands deserve more attention.
Subject
Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献