Use of Repeated Measures Data Analysis for Field Trials with Annual and Perennial Crops

Author:

Pagliari PauloORCID,Galindo Fernando ShintateORCID,Strock JeffreyORCID,Rosen Carl

Abstract

Field studies conducted over time to collect any type of plant response to a set of treatments are often not treated as repeated measures data. The most used approaches for statistical analyses of this type of longitudinal data are based on separate analyses such as ANOVA, regression, or time contrasts. In many instances, during the review of manuscripts, reviewers have asked researchers to treat year, for example, as a random effect and ignore the interactions between year and other main effects. One drawback of this approach is that the correlation between measurements taken on the same subject over time is ignored. Here, we show that avoiding the covariance between measurements can induce erroneous (e.g., no differences reported when they exist, or differences reported when they actually do not exist) inference of treatment effects. Another issue that has received little attention for statistical inference of multi-year field experiments is the combination of fixed, random, and repeated measurement effects in the same statistical model. This type of analysis requires a more in-depth understanding of modeling error terms and how the statistical software used translates the statistical language of the given command into mathematical computations. Ignoring possible significant interactions among repeated, fixed, and random effects might lead to an erroneous interpretation of the data set. In this manuscript, we use data from two field experiments that were repeated during two and three consecutive years on the same plots to illustrate different modeling strategies and graphical tools with an emphasis on the use of mixed modeling techniques with repeated measures.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3