Abstract
The potential of multi-purpose barley (Hordeum vulgare L.) cultivars to suppress weeds while maintaining optimal yield and grain quality has been reported but not recently evaluated in replicated field trials performed under southern Australian field conditions. Therefore, to investigate this potential, aboveground competitive traits were assessed in nine genetically diverse commercial barley cultivars in 2015, 2016 and 2017, in two locations in the Riverina region of NSW in replicated field trials performed in the absence of pre-emergent herbicide treatment. Crop and weed establishment, early vigour, leaf area index, photosynthetically active radiation (PAR) and biomass were assessed at various crop growth stages, including early growth, vegetative, flowering, grain fill and harvest. Cultivar differences in crop and weed biomass accumulation at ~50, 100 and 150 days after planting were noted at both locations. Early barley biomass accumulation was inversely related to weed biomass in both locations and most years, suggesting strong (over 90%) potential for heritable competitive barley interference against weeds. The current study also observed a positive relationship between PAR light interception and crop biomass in all three years at both locations, suggesting that PAR light interception contributed positively to crop biomass accumulation by directly increasing photosynthesis (50–70%) and growth or indirectly influencing weed biomass accumulation (10–15%) and weed interference (50–75). Partial least squares modelling was performed with 2015 and 2016 datasets to assess the interactions between crop developmental traits and weed suppression. Cultivars exhibiting enhanced early vigour and PAR light interception were generally more weed suppressive under optimal higher soil moisture conditions. Our results indicate that the choice of barley cultivar has a significant impact on weed establishment, fecundity and seedbank dynamics. The use of competitive barley genotypes is, thus, a cost-effective strategy to reduce weed seedbank numbers over time and may reduce potential herbicide use.
Funder
Grains Research and Development Corporation
Subject
Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献