Effect of Rhizome Fragment Length and Burial Depth on the Emergence of a Tropical Invasive Weed Cyperus aromaticus (Navua Sedge)

Author:

Chadha Aakansha,Florentine Singarayer K.ORCID,Dhileepan KunjithapathamORCID,Turville ChristopherORCID

Abstract

Cyperus aromaticus (Navua sedge) is a problematic perennial weed in pastures and crops including sugarcane, banana, rice, and fruits and vegetables in tropical climates. It reproduces both via rhizomes and seeds. As a regenerative and storage organ, these rhizomes play an important part in the invasion, establishment, and persistence of this weed. To eliminate their regenerative ability, it is important to understand the regrowth potential with respect to rhizome fragment size and burial depth. This study evaluated the emergence of C. aromaticus from rhizomes in a controlled condition. Three different sizes of rhizome fragments were buried at seven depths of up to 20 cm in two soil types. The experimental measurements included (i) the time for tillers to emerge, (ii) the cumulative emergence of tillers, recorded weekly, and (iii) the number of underground emerging tillers. The cumulative shoot emergence and the number of underground tillers produced were found to be positively correlated with the initial length of the rhizome fragments and negatively correlated with the burial depth. The time for the emergence of the tillers was negatively correlated with the burial depth, and soil type had no significant effect on any of the parameters recorded. There was no emergence recorded from rhizomes buried at 15 cm depth and deeper, irrespective of their size. Our results indicate that the combination of the fragmentation of rhizomes into small pieces and a deep burial, below 15 cm, is an important aspect to control the regeneration of C. aromaticus from rhizomes, if tillage is carried out, and can therefore form a part of an integrated weed management strategy for this troublesome weed.

Funder

Federation University, Australia

Department of Agriculture and Fisheries, Biosecurity Queensland, Australia

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3