Characterization and QTL Mapping of a Major Field Resistance Locus for Bacterial Blight in Rice

Author:

Park Jae-RyoungORCID,Lee Chang-Min,Ji Hyeonso,Baek Man-Kee,Seo JeonghwanORCID,Jeong O-Young,Park Hyun-Su

Abstract

Bacterial blight (BB) disease, caused by Xanthomonas oryzae pv. oryzae (Xoo), is among the major factors that can cause rice yields to decrease. To address BB disease, researchers have been looking for ways to change pesticides and cultivation methods, but developing resistant cultivars is the most effective method. However, the resistance and genetic factors of cultivars may be destroyed due to the emergence of new Xoo species caused by recent and rapid climate changes. Therefore, breeders need to identify resistance genes that can be sustained during unpredictable climate changes and utilized for breeding. Here, qBBR11, a quantitative trait locus (QTL) for resistance to BB disease, was detected in KJ (Korea Japonica varieties) 11_067 to KJ11_068 on chromosome 11 in a population derived by crossing JJ (Jeonju) 623 and HR(High resistant)27,195, which possess similar genetic backgrounds but different degrees of resistance to BB disease. qBBR11 was reduced from 18.49–18.69 Mbp of chromosome 11 to 200 kbp segment franked. In this region, 16 candidate genes were detected, and we identified 24 moderate-impact variations and four high-impact variations. In particular, high-impact variations were detected in Os11g0517800 which encode the domain region of GCN2 which is the eIF-2-alpha kinase associated with the resistance of abiotic/biotic stress in rice. In JJ623, which is moderately resistant to BB disease, a stop codon was created due to single nucleotide polymorphism (SNP). Therefore, compared with HR27195, JJ623 has weaker resistance to BB disease, though the two have similar genetic backgrounds. The results suggest that variation in the qBBR11 region regulates an important role in improving resistance to BB diseases, and qBBR11 is useful in providing an important resource for marker-assisted selection to improve mechanisms of resistance to BB disease.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Reference70 articles.

1. What it will take to Feed 5.0 Billion Rice consumers in 2030

2. The rice genome revolution: from an ancient grain to Green Super Rice

3. Population growth and global food supplies;Ritson,2020

4. Climate change: Impact on plant pathogens, diseases, and their management;Hunjan,2020

5. Adaption to climate change: Climate adaptive breeding of maize, wheat and rice;Watson,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3