The Role of Alternative Electron Pathways for Effectiveness of Photosynthetic Performance of Arabidopsis thaliana, Wt and Lut2, under Low Temperature and High Light Intensity

Author:

Popova Antoaneta V.ORCID,Stefanov Martin,Ivanov Alexander G.ORCID,Velitchkova MayaORCID

Abstract

A recent investigation has suggested that the enhanced capacity for PSI-dependent cyclic electron flow (CEF) and PSI-dependent energy quenching that is related to chloroplast structural changes may explain the lower susceptibility of lut2 to combined stresses—a low temperature and a high light intensity. The possible involvement of alternative electron transport pathways, proton gradient regulator 5 (PGR5)-dependent CEF and plastid terminal oxidase (PTOX)-mediated electron transfer to oxygen in the response of Arabidopsis plants—wild type (wt) and lut2—to treatment with these two stressors was assessed by using specific electron transport inhibitors. Re-reduction kinetics of P700+ indicated that the capacity for CEF was higher in lut2 when this was compared to wt. Exposure of wt plants to the stress conditions caused increased CEF and was accompanied by a substantial raise in PGR5 and PTOX quantities. In contrast, both PGR5 and PTOX levels decreased under the same stress conditions in lut2, and inhibiting PGR5-dependent pathway by AntA did not exhibit any significant effects on CEF during the stress treatment and recovery period. Electron microscopy observations demonstrated that under control conditions the degree of grana stacking was much lower in lut2, and it almost disappeared under the combined stresses, compared to wt. The role of differential responses of alternative electron transport pathways in the acclimation to the stress conditions that are studied is discussed.

Funder

Bulgarian Science Fund

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3