Spatial and Temporal Variability and Driving Factors of Carbon Dioxide and Nitrous Oxide Fluxes in Alpine Wetland Ecosystems

Author:

Yu BingORCID,Xu Wenjing,Yan Linlu,Bao Heng,Yu Hongxian

Abstract

Plants regulate greenhouse gas (GHG) fluxes in wetland ecosystems, but the mechanisms of plant removal and plant species that contribute to GHG emissions remain unclear. In this study, the fluxes of carbon dioxide (CO2) and nitrous oxide (N2O) were measured using the static chamber method from an island forest dominated by two different species, namely Betula platyphylla (BP) and Larix gmelinii (LG), in a marsh wetland in the Great Xing’an Mountains. Four sub-plots were established in this study: (1) bare soil after removing vegetation under BP (SBP); (2) bare soil after removing vegetation under LG (SLG); (3) soil with vegetation under BP (VSBP); and (4) soil with vegetation under LG (VSLG). Additionally, the contributions of the dark respiration from plant aerial parts under BP (VBP) and LG (VLG) to GHG fluxes were calculated. We found that the substantial spatial variability of CO2 fluxes ranged from −25.32 ± 15.45 to 187.20 ± 74.76 mg m−2 h−1 during the study period. The CO2 fluxes decreased in the order of SBP > VSLG > VSBP > SLG > VLG > VBP, indicating that vegetation species had a great impact on CO2 emissions. Particularly, the absence of vegetation promoted CO2 emission in both BP and LG. Additionally, CO2 fluxes showed dramatically seasonal variations, with high CO2 fluxes in late spring (May) and summer (June, July, and August), but low fluxes in late summer (August) and early autumn (September). Soil temperatures at 0–20 cm depth were better predictors of CO2 fluxes than deeper soil temperatures. N2O fluxes were varied in different treatments with the highest N2O fluxes in SLG and the lowest N2O fluxes in VBP. Meanwhile, no significant correlation was found between N2O fluxes and air or soil temperatures. Temporally, negative N2O fluxes were observed from June to October, indicating that soil N2O fluxes were reduced and emitted as N2, which was the terminal step of the microbial denitrification process. Most of the study sites were CO2 sources during the warm season and CO2 sinks in the cold season. Thus, soil temperature plays an important role in CO2 fluxes. We also found that the CO2 flux was positively related to pH in a 10 cm soil layer and positively related to moisture content (MC) in a 50 cm soil layer in VSBP and VSLG. However, the CO2 flux was negatively related to pH in a 30 cm soil layer in SBP and SLG. Our findings highlight the effects of vegetation removal on GHG fluxes, and aid in the scientific management of wetland plants.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Reference57 articles.

1. Climate Change 2001: The Scientific Basis;Houghton,2001

2. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change;IPCC,2013

3. The effect of water table depth on emissions of N2O from a grassland soil

4. Temperature and moisture affect methane and nitrous oxide emission from bovine manure patches in tropical conditions

5. Greenhouse gas emissions from intact riparian wetland soil columns continuously loaded with nitrate solution: a laboratory microcosm study

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3